Genetic algorithms in PD Control Systems, a
multivariable and multiobjective approach

Edéar Chavolla, Erik Cuevas, Daniel Zaldivar, Marco Perez and Alberto De La Mora

chavolla@gmail.com
Universidad de Guadalajara, CUCEI, Av. Revolucién 1500,

44430 Guadalajara, Jalisco, México.

(Paper received on February 29, 2008, accepted on April 15, 2008)
Abstract.

The design of a PID controller is a multiobjective problem. The designer has to adjust
the controller parameters such that the feedback interconnection of the plant and the
controller satisfies 2 set of specifications. The specifications are usually competitive
and any acceptable solution requires a trade-off among them. In this work an
approach for adjusting the parameters of a PD controller based on multiobjective
optimization and genetic algorithms is presented. This approach was proven
successfully to find the parameters of a PD controller on a level plant

1 Introduction

In recent years the development of controllers on the base of genetic algorithms has
been paid much attention. The PID is the most accepted controller in the industry. In
fact, most of them are PD controllers because the integral action has been switched
off. Although the number of parameters to adjust in a PID controller is very small and
a great deal of tuning rules can be found in the literature [1]. In a recent study, it has
been experimentally checked that more than 30% of the installed controllers are
operating in manual mode and 65% of the loops operating in automatic mode are

poorly tuned [2]. This justifies the search for new approaches to adjust industrial
controllers. ' , "

During the past decades great attention has been paid to optimization methods for
controller design. The control design problem is a multiobjective problem. An
effective design method should allow one to deal with several objectives that could
possibly be expressed using various types of norms.

The fixed structure of the PID controllers creates serious problems for applying the
modem optimal design methods that deal with unstructured controllers. Moreover, the
resultant optimization problem is not convex and local optimization methods can be
stuck in a local minimum. This has motivated the use of genetic algorithms GA’s for

adjusting PID controllers [3-5].

©E. V. Cuevas, M. A. Perez, D. Zaldivar, H. Sossa, R. Rojas (Eds.) -
Special Issue in Electronics and Biomedical Informatics, lz ‘s
Computer Science and Informatics

Research in Computing Science 35, 2008, pp. 41-50

42 Edgar Chavolla et al.

The genetic algorithm is a method for solving both constrained and unconstrained
optimization problems that is based on natural selection. The genetic algorithm
repeatedly modifies a population of individual solutions. At each step, the genetic
algorithm selects individuals at random from the current population to be parents and
uses them to produce the children for the next generation. Over successive
generations, the population "evolves" toward an optimal solution. Genetic algorithm
can be applied to solve a variety of optimization problems that are not well suited for
standard optimization algorithms, including problems in which the objective function
is discontinuous, multiple, nondifferentiable, stochastic, or highly nonlinear.

In this work an approach for adjusting the parameters of a PD controller based on
multiobjective optimization and genetic algorithms is presented. This approach was
proven successfully to find the parameters of a PD controller on a level plant

The document is organized as follows: in section 2 the plant is described, in section 3
the optimization approach is explained, in 4 the results are presented and finally in
section 5 the conclusions are established.

2. System description

The plant in this work is a water level system. This system is controlled by a PD
Fuzzy system [6]. The PD Controller has three gain parameters to adjust the behavior
of the control. Every parameter has an effect over the system behavior. In the water
level System there are three objectives identified to be considered in the output level:
Maximum Peak level (MP), Time to reach the desired level (TC), Time for
Stabilization (TSS). These objectives are shown in the figure 1.

T

SN

v

TC

<
«

<

TSS

Fig. 1. System response objectives.

Genetic algorithms in PD Control Systems, a multivariable and... 43

Our whole system has the following configuration: The reference level block, the
error signal and error rate block, the PD Fuzzy Block, the output signal block and the
plant. Figure 2 shows the system configuration.

Reference » () p| Eiror signal and error ' " PD Fuzzy controller
level " rate g
A ‘
Output signal treatment
Plant

Fig. 2. System configuration

There are inside the “ervor signal, error rate” and the “output signal” blocks three
gains that affect lineally the system. The gains are for the input: Error Gain (Ge) and
Rate Gain (Gr), and Output Gain (Gu) [7] for the output.

Error signal, error rate block

Error : \ error
t 1 Ge R ¥ Fuzzy PD
; : Controller
' | rate
] P 1]
: dE/dt 1 Gr : d
LT .2
~Quiputblogk _

Signal converter (To an adequate
level for the system)

1
1
i
1
1
1
Water level Water level system !
t
:
£

@1 (Water tank)
Gu

Fig. 3. A closer look into the target system. Here the gains can be located (Ge, Gr and Gu).

Ge, Gr and Gu will be the input variables for the GA, while TC, MP and TSS will be
the objectives to achieve.

44 Edgar Chavolla et al.

3 GA procedure

Multi Objective Problems (MOP) is a field where in the latest years has been many
advances and new algorithms have been developed and proposed. The general field
where all these algorithms have been classified is named Multi- Objective
Evolutionary Algorithm (MOEA) [8].

In the process to solve the multi-variable algorithm and the MOP, some techniques
that allow improving the effectiveness of the algorithm will be used. These techniques
converge in a faster way to a convenient solution.

The problem can be divided in three main sections: A general GA implementation,
the Multi-Objective Algorithm (MOA), and the Multi-Variable Algorithm (MVA)

The general implementation procedure contains the following operations:

1. Set parameters

2. Create randomly a population
3. loop until condition

4. mix population

5. crossover

6 mutation

7 evaluate fitness

8 natural selection

9. end loop

10. Show results

MOA will act in the fitness evaluation process (step 7), and MV A will act in the
crossover process (step 5). The rest of the steps can be created as any normal GA.

3.1 General GA implementation

This process is almost the same as any other GA; however is needed to add some
specific parameters that help to the MOA and MVA procedures. The crossover step
will not take place in the general GA implementation, it will be done in the MVA
procedure, and the fitness evaluation will be completed by the MOA procedure.

For the MV, three random seeds will be created (one for every variable), so it can
have independent values to create or mutate each gene. Also for the MOA a
dominance factor is needed; this will tell the crossover algorithm (the MVA) how to
mix the genes. In MOA the parameters are set to the desired values for the objectives,
and the weight of them.

Genetic algorithms in PD Control Systems, a multivariable and... 45

3.2 MVA implementation (Crossover)

In this part the inheritance theory from Gregor Johann Mendel is used. The Mendel’s
Theory states a set of primary tenets relating to the transmission of hereditary
characteristics from parent organisms to their children

This theory basically tells the way the parent’s genes are affecting genes in the
offspring. There are two types of genes in the parents, the dominant genes and the
recessive genes. The dominant genes will affect mostly in the offspring, while the
recessive gene will have little effect. Enumerating some cases from the gene
combination based on the dominant factor (Table 1).

Parent 1 gene | Parent 2 gene QOffspring gene
+X -Y X(Y) Mainly affectby X
X +Y Y(X) Mainly affectby Y
+X +Y XY Equally affected by Xand Y
-X -Y XY Equally affected by X and Y
++X Y X Only affected by X
-X +Y Y Only affected by Y

Table 1. The possible combinations from the genes considering the dominance factor. + means
a dominant gene, ++ means a superior gene, while — means a recessive gene, and -- a gene that
is likely to disappear.

Table 1 shows that there are 5 different kinds of breed from the parents. This table
applies for every gene in the chromosome. It is needed to consider all the possible
combination, because it cannot be decided a priori what would be the dominant gene.
This is due to the Multi-objective problem; cannot be assured if giving more weight to
a gene will improve or will degrade one or some of the objectives.

Based on table 1, the total number of the new breed for each pair of individuals can
calculate as: .

offspring _number = number _of _combinations™ -7 -5 (D

In the system there are 3 genes and using 5 combinations, this will give using
equation (1), 125 new offsprings in every generation for every parent pair. Thisis a
big breed, but eliminating some the possible combinations can reduce it.

For the combination of the genes, it will be used Eq. (2), so the general definition of
the crossover is an arithmetic operation. The values for gain_1 and gain_2 correspond
to the dominance factor defined for the gene.

)
new _gene = (gene_l*gain_l+gene_2*gain#2)/2

46 Edgar Chavolla et al.

The dominant factor will be multiplied by gene 1 or gene 2, depending on the
combination and the way the algorithm needs to converge (table 2),

Parent gene 1 | Parent gene 2 Formula for the offspring gene
+X Y . (X * (Dominant_factor) +Y) /2
-X +Y (Y * (Dominant_factor) + X) /2
+X +Y X+Y)2
-X -Y X+Y) /72
++X --Y X
-X +—=+Y Y

Table 2. This table shows the formulas used depending on the gene combination,

Considering the previous tables and equations, the MV A can be described as:

1. Take pairs of individuals (parents) from the population

2. Create the number of children according to the combination formula (1)

3. Assign values to the genes depending on the combinations done base on
Table. I using the formulas given by Table 2

3.3 MOA implementation (Evaluate fitness)

This process operates with each individual that has not been yet evaluated. In the
water. level plant, the objective functions are measures from the output response. As
the controller affects the system, it is relatively easy to define equations that evaluate
the objectives of the system dynamics.

The solution is to accomplish an implementation of the whole system, and set the
gain values using the data contained in the genes of each individual. So for each
individual it will be run a simulation of the whole process in order to obtain the
objective values. :

After evaluating the objective values with the data from the individual, the output
values are compared against the desired values, and the error rate is obtained. The
equation (3) can be used if the desired value is not zero. If the desired value is zero,
the error rate can be approximated by equation (3a). The correction value in equation
(3a) should be set by testing; the value should be set between 0 and 1. This correction
value prevents big values in the error rate.

error _rate = (Idesired _ value — obtained _ value{) / desired _value 3)

error _rate = [obtained _ valuel * correction _value (32)

Genetic algorithms in PD Control Systems, a multivariable and... 47

Equations (3) and (3a) produce three error values (one for each objective). Now the
error values are combined in a fitness value, so this fitness value ranks the individual
behavior obtained.

The next step involves the weight values set for every objective. These weigh values
define how strong is the objectives in the algorithm. Thus, a stronger objective will
affect more the fitness values than one with a low weight.

In MOP the fitness value is calculated from the three objectives using (4), this
expression calculates the weight mean depending on the weights values and error
rates of every objective (lower fitness values are considered to be better).

(error _1*weight _1+error _2*weight _2-+ervor _3*weight _3) @)
(weight _1+weight _2+weight _3)

fitmess =

The process is summarized as:

1. Evaluate the system for every individual in the population
2. Get the objective values for each individual
3. Calculate the error rate for every objective
4. Calculate the fitness values
4 Results

The implementation of the GA was made in Matlab and Java. Java was chosen due to
the nature of the problem that can be mapped directly to OOP; and also because it is
supported by Matlab.

In the water level plant, MP parameter is defined as the absolute difference between
the maximum real value and the desired value. This is a little different from the
original definition. This change makes possible support the case, when the output is
under the desired level.

Considering the importance of the parameters, the weights must be selected. MP is
the most important parameter as well as the TC parameter, while the TSS parameter is
not considered as critical in the application. In order to set TC and TSS to the desired
values, the minimum filling time for the water plant should be considered. This is
around to 162 seconds, so TC an TSS can not be less then this value.

Parameter Value
‘Weight for MP 1
Weight for TC 1
Weight for TSS 0.1

48 Edgar Chavolla et al.

Population size 10
Dominance factor 0.2
Mutation factor 50%
Desired level 60
Seed for Ge 140
Seed for Gr 2
Seed for Gu 3
Desired MP .01
Desired TC 170
Desired TSS 180

Table 3. The parameter used in the GA implementation.

After running the GA 30 generations, acceptable results were found (Table 4). TSS
is exactly the required value and a better Mp value was found (closer to the desired
level), only TC was higher than expected. This can be considered a good solution to

the plant (only 0.0886 in the fitness value).

Parameter Desired values Obtained values
MP (Weight 1) .01 0085
TC (weight 1) 170 174
T8S (weight .1) 180 180

Table 4. The result from the tuned up parameters after 30 generations

An optimal result was found after only 18 generations, which can be considered a fast
way to get the gain values for the PD controller (Fig.4). The gain values were Gu:

1.674270492132032, Gr: 83.5564484964882, and Ge: 75.69871513072385.

Fig.4. The fitness function shows how an optimal result was found after 30 generations.

Genetic algorithms in PD Control Systems, a multivariable and... 49
5 Conclusions

In this work an approach for adjusting the parameters of a PD controller based on
multiobjective optimization and genetic algorithms was presented. This approach was
proven successfully to find the parameters of a PD controller on a level plant

PD and PID controller systems can be greatly improved using the techniques
described in this paper. The controller can be set to operate in a desired operation
range with a minimum of error.

Moreover, the technique used in the controller finds an optimal set of gain values
faster than manual procedure or other techniques. This is true most of the time, due to
the randomness in the nature of the technique itself. Some times the GA would find a
local solution, so the algorithm should be stop and started again. Doing this restating
process will allow the GA to find a better place to converge to a good solution.

To find a good solution the dominance factor was set to a level that let the GA to
change in fast way without losing precision (a high value make the GA converge
faster, and low values make the GA get more precise values). It was found that this
value can be between 0.1 and 1 to find optimal precision-speed performance.

The seeds for Gr, Ge and Gu were chosen using previous experiences in the system,
so the random values were generated close to some values that give a stable behavior.
These seeds guaranty that the GA will start around a value that can be closer the
desired. The mutation factor was chosen to 50% to let the GA have plenty of new
points to search without being a random search with not a tendency.

The problem using GA-MVA-MOA, is the amount of resources needed to make it
run. The memory and the computer speed affects greatly in the GA performance. As a
consequence a really careful setting in the initial parameters in the GA should be done
in order to get good results and have a good performance in the GA.

The population was set to 10, this was due to limitations of resource in the computer,
also 10 is wide enough to let the GA have a good number of combinations without
overwhelming the algorithm.

The incorporation of MVA and MOA in GA allows to find optimal gain values
faster than other methods and to reach the global minimum.
References

[1] O’Dwyer, A.: PI and PID Controller Tuning Rules for Time Delay Processes: 2 Summary.
Tech. Rep. AOD-00-01 Ver. 1, Dublin Institute of Technology, Ireland (2000)

50 Edgar Chavolla et al.

[2] Ender, D. B.: Process control performance: Not as good as you think. Control. Eng. 40 -10,
180-196 (1993)

[3] Jones, A. and De Moura Oliveira, P.: Genetic autotuning of PID controller. In Proceedings
of the First International Conference on Genetic Algorithms in Engineering Systems:
Innovations and Applications, Sheffield, UK, IEE, (1995) pp. 141-530.

[4] Salami, M. and Cain, G., An adaptive PID controller based on genetic algorithm processor.
In Proceedings of the First International Conference on Genetic Algorithms in Engineering
Systems: Innovations and Applications, Sheffield, UK, IEE, (1995), pp. 88-94.

[5] Chen, B. and Cheng, Y., A structure-specified A" optimal control design for practical
applications: A genetic approach. IEEE Trans. Control Syst. Technol, (1998) pp. 707-718.

[6] Sanchez E., Nuno L.A., Hsu Y.C., and Guanrong C, Real Time Fuzzy Swing-up Control
for an Underactuated Robot, JCIS '98 Proceedings, Vol 1 ,N.C., USA, (1998)

[7] Cuevas E. V., Zaldivar D., and R. Rojas.: Incremental fuzzy control for a biped robot
balance. IASTED International Conference on ROBOTICS AND APPLICATIONS ~RA 2005,
Cambridge, USA (2005) pp.7-12.

[8] Carlos A. Coello Coello, Gary B. Lamont and David A. Van Veldhuizen, Evolutionary
Algorithms for Solving Multi-Objective Problems (Second edition), Springer, (2007)

